
Unified Parallel C at LBNL/UCB

UPC Applications Overview

Parry Husbands
17 May 2004

Unified Parallel C at LBNL/UCB

Overview

• Our mission
- Help improve Berkeley UPC Environment

- Stress translator and runtime
- Determine performance bottlenecks (if any)

- Outreach
- Showcase features of UPC

- Continue explorations in PGAS languages
- Validate design decisions
- Question others
- Suggest extensions

Unified Parallel C at LBNL/UCB

Our environment at scale

• NAS Multigrid Class D (1024 x 1024 x 1024)
• Written using 1-sided style

116,211512

202,1411024

63,552256

35,510128

Mflop/secThreads

Lemieux @ PSC
Alpha/Quadrics

Unified Parallel C at LBNL/UCB

Sparse Matrix – Vector
Multiplication

• Compute y = A*x for distributed sparse matrix A
• Key component of solvers
• Irregular – threads require variable number of

elements of x

X X X X
X X X X

X X
X X X X X

* =

Unified Parallel C at LBNL/UCB

SPMV using memcpy
extensions

• Implemented using non-blocking indexed gets

spmv(A,x)
// Compute Ax for sparse A
non-blocking get of remote values of x
computation of part of result using local values of x
sync
computation of rest of result using remote values of x

• Significantly simplified code, particularly setup
• Not tuned yet, but shows promise

Unified Parallel C at LBNL/UCB

Outreach: Parallel Triangulation

• First step in many physical simulations
• Lots of dynamic data movement (~ 4K LOC + Triangle)

Unified Parallel C at LBNL/UCB

Improving the Delaunay
Triangulation Code

• Message coalescing performed manually
- Eventually automatic

• Teams library further optimized and extended
- Now includes a distributed vector facility

• Fast redistribution code implemented

Time for 1 million points
in a sphere
HP UPC
Alpha/Quadrics@MTU 7.504

5.198

12.612

14.61

Time (s)Threads

Unified Parallel C at LBNL/UCB

The effort continues…

• Message coalescing in practice
• Further improvements to Triangulation code
• More examples using the memcpy extensions

- Performance tuning
• Programs using collectives

- Are they the “right” interface?
• More involvement in language specification

